广义摆动方程的标准形式为:
雅可比矩阵为:
平衡点分析
平衡点
若
注意
当
鞍点处的雅可比矩阵
把
记迹与行列式分别为
特征值与特征向量
特征值
由于
对应的特征向量可取
稳定流形和不稳定流形
归一化后,两个特征向量取
带入特征值
因
因
鞍点附近的泰勒展开
1.坐标变换
将
新的方程表示为
2.摄动展开
执行摄动展开:
带入上式方程,对应阶数得到对应阶数方程,形如
= 1 阶方程 = dz/dt 方程: Eq(Derivative(z1(t), t), 0.636625585963109z1(t)) dw/dt 方程: Eq(Derivative(w1(t), t), -1.25662558596311w1(t))
= 2 阶方程 = dz/dt 方程: Eq(Derivative(z2(t), t), -0.176270821444344w1(t)**2 + 0.361648167900887w1(t)z1(t) - 0.0270616997342404z1(t)2 + 0.636625585963109z2(t)) dw/dt 方程: Eq(Derivative(w2(t), t), -0.34793830026576w1(t)2 + 0.713851832099113w1(t)z1(t) - 1.25662558596311w2(t) - 0.0534166785556559z1(t)**2)
= 3 阶方程 = dz/dt 方程: Eq(Derivative(z3(t), t), 0.0822183310251369w1(t)**3 - 0.309553239051093w1(t)2z1(t) - 0.352541642888688w1(t)w2(t) + 0.261022442368344w1(t)*z1(t)2 + 0.361648167900887w1(t)z2(t) + 0.361648167900887w2(t)z1(t) + 0.0585438170471337z1(t)**3 - 0.0541233994684808z1(t)z2(t) + 0.636625585963109z3(t)) dw/dt 方程: Eq(Derivative(w3(t), t), 0.1622895162862w1(t)**3 - 0.611022442368345w1(t)2z1(t) - 0.695876600531519w1(t)w2(t) + 0.515228239051092w1(t)*z1(t)2 + 0.713851832099113w1(t)z2(t) + 0.713851832099113w2(t)z1(t) - 1.25662558596311w3(t) + 0.115558752308197z1(t)*3 - 0.106833357111312z1(t)*z2(t))
= 4 阶方程 = dz/dt 方程: Eq(Derivative(z4(t), t), 0.01523321322074w1(t)**4 - 0.0849983517112508w1(t)3z1(t) + 0.246654993075411w1(t)2w2(t) + 0.147219050217673w1(t)2*z1(t)2 - 0.309553239051093w1(t)**2z2(t) - 0.619106478102185w1(t)w2(t)z1(t) - 0.352541642888688w1(t)w3(t) - 0.0562855430568364w1(t)z1(t)**3 + 0.522044884736689w1(t)z1(t)z2(t) + 0.361648167900887w1(t)z3(t) - 0.176270821444344w2(t)**2 + 0.261022442368344w2(t)z1(t)**2 + 0.361648167900887w2(t)z2(t) + 0.361648167900887w3(t)z1(t) - 0.0400490772251903z1(t)4 + 0.175631451141401*z1(t)2z2(t) - 0.0541233994684808z1(t)z3(t) - 0.0270616997342404z2(t)2 + 0.636625585963109z4(t)) dw/dt 方程: Eq(Derivative(w4(t), t), 0.0300686084751904w1(t)4 - 0.167776956943164w1(t)**3z1(t) + 0.486868548858599w1(t)**2w2(t) + 0.290593449782327w1(t)**2z1(t)2 - 0.611022442368345*w1(t)2z2(t) - 1.22204488473669w1(t)w2(t)z1(t) - 0.695876600531519w1(t)w3(t) - 0.111101179538749w1(t)z1(t)3 + 1.03045647810218w1(t)z1(t)z2(t) + 0.713851832099113w1(t)z3(t) - 0.34793830026576w2(t)2 + 0.515228239051092w2(t)z1(t)2 + 0.713851832099113w2(t)z2(t) + 0.713851832099113w3(t)z1(t) - 1.25662558596311w4(t) - 0.079052265955115z1(t)4 + 0.346676256924589z1(t)**2z2(t) - 0.106833357111312z1(t)z3(t) - 0.053416678555656*z2(t)**2)
= 5 阶方程 = dz/dt 方程: Eq(Derivative(z5(t), t), -0.0038619196646498w1(t)**5 + 0.028757566314031w1(t)4z1(t) + 0.06093285288296w1(t)3w2(t) - 0.0765875581962067w1(t)3*z1(t)2 - 0.0849983517112508w1(t)**3z2(t) - 0.254995055133752w1(t)**2w2(t)z1(t) + 0.246654993075411w1(t)2w3(t) + 0.0782583525562788w1(t)2z1(t)**3 + 0.294438100435346w1(t)2z1(t)z2(t) - 0.309553239051093*w1(t)2z3(t) + 0.246654993075411w1(t)w2(t)**2 + 0.294438100435346w1(t)w2(t)z1(t)2 - 0.619106478102185w1(t)w2(t)z2(t) - 0.619106478102185w1(t)w3(t)z1(t) - 0.352541642888688w1(t)w4(t) - 0.00527193636971858w1(t)z1(t)4 - 0.168856629170509w1(t)z1(t)2z2(t) + 0.522044884736689w1(t)z1(t)z3(t) + 0.261022442368344w1(t)z2(t)2 + 0.361648167900887w1(t)z4(t) - 0.309553239051093w2(t)**2z1(t) - 0.352541642888688w2(t)w3(t) - 0.0562855430568364w2(t)z1(t)3 + 0.522044884736689w2(t)z1(t)z2(t) + 0.361648167900887w2(t)z3(t) + 0.261022442368344w3(t)*z1(t)2 + 0.361648167900887w3(t)z2(t) + 0.361648167900887w4(t)z1(t) - 0.0263287080709955z1(t)**5 - 0.160196308900761z1(t)3z2(t) + 0.175631451141401z1(t)2z3(t) + 0.175631451141401z1(t)z2(t)**2 - 0.0541233994684807z1(t)z4(t) - 0.0541233994684807z2(t)z3(t) + 0.636625585963109z5(t)) dw/dt 方程: Eq(Derivative(w5(t), t), -0.00762298463733787w1(t)**5 + 0.0567641238697187w1(t)4z1(t) + 0.120274433900761w1(t)3w2(t) - 0.151175019222945w1(t)3*z1(t)2 - 0.167776956943164w1(t)**3z2(t) - 0.503330870829491w1(t)**2w2(t)z1(t) + 0.486868548858599w1(t)2w3(t) + 0.154472974862873w1(t)2z1(t)**3 + 0.581186899564655w1(t)2z1(t)z2(t) - 0.611022442368344*w1(t)2z3(t) + 0.486868548858599w1(t)w2(t)**2 + 0.581186899564655w1(t)w2(t)z1(t)2 - 1.22204488473669w1(t)w2(t)z2(t) - 1.22204488473669w1(t)w3(t)z1(t) - 0.69587660053152w1(t)w4(t) - 0.0104061952202809w1(t)z1(t)4 - 0.333303538616248w1(t)z1(t)2z2(t) + 1.03045647810218w1(t)z1(t)z3(t) + 0.515228239051092w1(t)z2(t)2 + 0.713851832099113w1(t)z4(t) - 0.611022442368344w2(t)**2z1(t) - 0.69587660053152w2(t)w3(t) - 0.111101179538749w2(t)z1(t)3 + 1.03045647810218w2(t)z1(t)z2(t) + 0.713851832099113w2(t)z3(t) + 0.515228239051092w3(t)*z1(t)2 + 0.713851832099113w3(t)z2(t) + 0.713851832099113w4(t)z1(t) - 1.25662558596311w5(t) - 0.0519698374317043z1(t)5 - 0.31620906382046*z1(t)3z2(t) + 0.346676256924589z1(t)2z3(t) + 0.346676256924589z1(t)*z2(t)2 - 0.106833357111312z1(t)z4(t) - 0.106833357111312z2(t)z3(t))
求解各阶解,形如:
= 各阶解 = w1 = 0 w2 = -0.0211143402100825a(t0)**2exp(1.27325117192622t)exp(-1.27325117192622t0) w3 = -0.00179505802924157a(t0)3exp(1.27325117192622t)exp(-1.27325117192622t0) + 0.0331683056091246*a(t0)3exp(1.90987675788933t)exp(-1.90987675788933t0) w4 = 0.00157395461517941a(t0)**4exp(1.27325117192622t)exp(-1.27325117192622t0) + 0.00422975802518084a(t0)4exp(1.90987675788933t)exp(-1.90987675788933t0) - 0.0223672954802892*a(t0)4exp(2.54650234385244t)exp(-2.54650234385244t0) w5 = -0.000525489787814235a(t0)**5exp(1.27325117192622t)exp(-1.27325117192622t0) - 0.00361886497519084a(t0)5exp(1.90987675788933t)exp(-1.90987675788933t0) - 0.00380315870113136*a(t0)5exp(2.54650234385244t)exp(-2.54650234385244t0) - 0.00401881299356255a(t0)**5exp(3.18312792981555t)exp(-3.18312792981555t0) z1 = a(t0)exp(0.636625585963109t)exp(-0.636625585963109t0) z2 = 0.0425080303571217a(t0)2exp(0.636625585963109t)exp(-0.636625585963109t0) - 0.0425080303571217*a(t0)2exp(1.27325117192622t)exp(-1.27325117192622t0) z3 = -0.0381756377357578a(t0)**3exp(0.636625585963109t)exp(-0.636625585963109t0) - 0.00361386528968398a(t0)3exp(1.27325117192622t)exp(-1.27325117192622t0) + 0.0417895030254418*a(t0)3exp(1.90987675788933t)exp(-1.90987675788933t0) z4 = 0.0140666785450764a(t0)**4exp(0.636625585963109t)exp(-0.636625585963109t0) + 0.00316873318782794a(t0)4exp(1.27325117192622t)exp(-1.27325117192622t0) + 0.00532916838964353*a(t0)4exp(1.90987675788933t)exp(-1.90987675788933t0) - 0.0225645801225478a(t0)**4exp(2.54650234385244t)exp(-2.54650234385244t0) z5 = 0.0130038185344948a(t0)5exp(0.636625585963109t)exp(-0.636625585963109t0) - 0.00105793198511116*a(t0)5exp(1.27325117192622t)exp(-1.27325117192622t0) - 0.00455949033428469a(t0)**5exp(1.90987675788933t)exp(-1.90987675788933t0) - 0.00383670342737988a(t0)5exp(2.54650234385244t)exp(-2.54650234385244t0) - 0.00354969278771912*a(t0)5exp(3.18312792981555t)exp(-3.18312792981555t0)
3.重整化方程
整合
至此,原方程被转换为一维变尺度高阶动力学方程,对原方程有很好的近似,可以更加精确地刻画吸引域边界
如图所示,红色曲线为故障曲线,当其突破吸引域边界(黑色点线)后一去不返,此时恢复系统参数无法使系统回归正常状态(stable point),利用重整化近似得到的边界(蓝色)能够及时检测到截断时间