广义摆动方程吸引域边界重整化

标准形式

广义摆动方程的标准形式为:

{ddtx(t)=y(t)ddty(t)=β平衡项+sin(x)非线性恢复力+(αcos(x)γ)y(t)速度依赖阻尼1.

平衡性分析

  1. 雅可比矩阵为

J(x,y)=[01cos(x)αcos(x)γ]
  1. 平衡点分析

平衡点 (x,y) 要满足

y=0,βsinx=0sinx=β.

|β|<1,则有两组解:

x1=arcsinβ,x2=πarcsinβ,y=0.

注意 cosx1=1β2>0cosx2=1β2<0
cosx<0detJ(x,0)>0,对应鞍点,因此选

(xs,ys)=(πarcsinβ,0).
  1. 鞍点处的雅可比矩阵

(x,y)=(xs,0) 代入 J(x,y)

Js=J(xs,0)=(011β2α1β2γ).

记迹与行列式分别为

T=trJs=α1β2γ,D=detJs=1β2>0.
  1. 特征值与特征向量

特征值 λ 满足方程

λ2Tλ+D=0λ1,2=T±T24D2=(α1β2γ)±(α1β2γ)241β22.

由于 D>0,故一正一负,为典型鞍点。
对应的特征向量可取

vi=(1λi),i=1,2,
  1. 稳定流形和不稳定流形

归一化后,两个特征向量取

vi=(1λi),vi=1+λi2,v^i=vivi.

带入特征值 λ11.37052, λ20.66896 得:

v1=1+(1.37052)21.697,v^1=(1/1.6971.37052/1.697)(0.58960.8077),v2=1+(0.66896)21.203,v^2=(1/1.2030.66896/1.203)(0.83130.5568).
  1. 鞍点附近的泰勒展开

f(5)(x,y)={ddtx(t)=y(t)ddty(t)=(α1β2γ)y线性项+(1β2+αβy)(xxs)一阶项+12(βαy1β2)(xxs)2二阶项+16(1β2αβy)(xxs)3三阶项+124(β+αy1β2)(xxs)4四阶项+1120(1β2+αβy)(xxs)5五阶项

 

image-20250429170812547

重整化

1.坐标变换

[x,y]坐标变换为[z,w]坐标,其中z,w分别为鞍点的不稳定方向和稳定方向:

a1,a2=v1b1,b2=v2x=(a1z+b1w)+xsy=(a2z+b2w)+ys

新的方程表示为

ddt[zw]=[0.214072037938063w+0.214072037938063z0.0267962588229219(0.506615170878591wz)5(0.42w+0.42z+0.8)0.0852959198738089(0.506615170878591wz)4(0.56w+0.56z0.6)+0.217206259879704(0.506615170878591wz)3(0.42w+0.42z+0.8)0.414837187412316(0.506615170878591wz)2(0.56w0.56z+0.6)0.336260500140295(0.795781982453887w1.57078198245389z)(0.42w+0.42z+0.8)0.834072037938063w0.834072037938063z0.0528927287677762(0.506615170878591wz)5(0.42w+0.42z+0.8)0.168364322224867(0.506615170878591wz)4(0.56w+0.56z0.6)+0.42874014116675(0.506615170878591wz)3(0.42w+0.42z+0.8)0.818840830788565(0.506615170878591wz)2(0.56w0.56z+0.6)0.663739499859705(0.795781982453887w1.57078198245389z)(0.42w+0.42z+0.8)]

2.摄动展开

执行摄动展开:

z=z0+ϵz1+ϵ1z2+ϵ2z3+ϵ3z4+ϵ4z5w=ϵw1+ϵ1w2+ϵ2w3+ϵ3w4+ϵ4w5

带入上式方程,对应阶数得到对应阶数方程,形如

= 1 阶方程 = dz/dt 方程: Eq(Derivative(z1(t), t), 0.636625585963109z1(t)) dw/dt 方程: Eq(Derivative(w1(t), t), -1.25662558596311w1(t))

= 2 阶方程 = dz/dt 方程: Eq(Derivative(z2(t), t), -0.176270821444344w1(t)**2 + 0.361648167900887w1(t)z1(t) - 0.0270616997342404z1(t)2 + 0.636625585963109z2(t)) dw/dt 方程: Eq(Derivative(w2(t), t), -0.34793830026576w1(t)2 + 0.713851832099113w1(t)z1(t) - 1.25662558596311w2(t) - 0.0534166785556559z1(t)**2)

= 3 阶方程 = dz/dt 方程: Eq(Derivative(z3(t), t), 0.0822183310251369w1(t)**3 - 0.309553239051093w1(t)2z1(t) - 0.352541642888688w1(t)w2(t) + 0.261022442368344w1(t)*z1(t)2 + 0.361648167900887w1(t)z2(t) + 0.361648167900887w2(t)z1(t) + 0.0585438170471337z1(t)**3 - 0.0541233994684808z1(t)z2(t) + 0.636625585963109z3(t)) dw/dt 方程: Eq(Derivative(w3(t), t), 0.1622895162862w1(t)**3 - 0.611022442368345w1(t)2z1(t) - 0.695876600531519w1(t)w2(t) + 0.515228239051092w1(t)*z1(t)2 + 0.713851832099113w1(t)z2(t) + 0.713851832099113w2(t)z1(t) - 1.25662558596311w3(t) + 0.115558752308197z1(t)*3 - 0.106833357111312z1(t)*z2(t))

= 4 阶方程 = dz/dt 方程: Eq(Derivative(z4(t), t), 0.01523321322074w1(t)**4 - 0.0849983517112508w1(t)3z1(t) + 0.246654993075411w1(t)2w2(t) + 0.147219050217673w1(t)2*z1(t)2 - 0.309553239051093w1(t)**2z2(t) - 0.619106478102185w1(t)w2(t)z1(t) - 0.352541642888688w1(t)w3(t) - 0.0562855430568364w1(t)z1(t)**3 + 0.522044884736689w1(t)z1(t)z2(t) + 0.361648167900887w1(t)z3(t) - 0.176270821444344w2(t)**2 + 0.261022442368344w2(t)z1(t)**2 + 0.361648167900887w2(t)z2(t) + 0.361648167900887w3(t)z1(t) - 0.0400490772251903z1(t)4 + 0.175631451141401*z1(t)2z2(t) - 0.0541233994684808z1(t)z3(t) - 0.0270616997342404z2(t)2 + 0.636625585963109z4(t)) dw/dt 方程: Eq(Derivative(w4(t), t), 0.0300686084751904w1(t)4 - 0.167776956943164w1(t)**3z1(t) + 0.486868548858599w1(t)**2w2(t) + 0.290593449782327w1(t)**2z1(t)2 - 0.611022442368345*w1(t)2z2(t) - 1.22204488473669w1(t)w2(t)z1(t) - 0.695876600531519w1(t)w3(t) - 0.111101179538749w1(t)z1(t)3 + 1.03045647810218w1(t)z1(t)z2(t) + 0.713851832099113w1(t)z3(t) - 0.34793830026576w2(t)2 + 0.515228239051092w2(t)z1(t)2 + 0.713851832099113w2(t)z2(t) + 0.713851832099113w3(t)z1(t) - 1.25662558596311w4(t) - 0.079052265955115z1(t)4 + 0.346676256924589z1(t)**2z2(t) - 0.106833357111312z1(t)z3(t) - 0.053416678555656*z2(t)**2)

= 5 阶方程 = dz/dt 方程: Eq(Derivative(z5(t), t), -0.0038619196646498w1(t)**5 + 0.028757566314031w1(t)4z1(t) + 0.06093285288296w1(t)3w2(t) - 0.0765875581962067w1(t)3*z1(t)2 - 0.0849983517112508w1(t)**3z2(t) - 0.254995055133752w1(t)**2w2(t)z1(t) + 0.246654993075411w1(t)2w3(t) + 0.0782583525562788w1(t)2z1(t)**3 + 0.294438100435346w1(t)2z1(t)z2(t) - 0.309553239051093*w1(t)2z3(t) + 0.246654993075411w1(t)w2(t)**2 + 0.294438100435346w1(t)w2(t)z1(t)2 - 0.619106478102185w1(t)w2(t)z2(t) - 0.619106478102185w1(t)w3(t)z1(t) - 0.352541642888688w1(t)w4(t) - 0.00527193636971858w1(t)z1(t)4 - 0.168856629170509w1(t)z1(t)2z2(t) + 0.522044884736689w1(t)z1(t)z3(t) + 0.261022442368344w1(t)z2(t)2 + 0.361648167900887w1(t)z4(t) - 0.309553239051093w2(t)**2z1(t) - 0.352541642888688w2(t)w3(t) - 0.0562855430568364w2(t)z1(t)3 + 0.522044884736689w2(t)z1(t)z2(t) + 0.361648167900887w2(t)z3(t) + 0.261022442368344w3(t)*z1(t)2 + 0.361648167900887w3(t)z2(t) + 0.361648167900887w4(t)z1(t) - 0.0263287080709955z1(t)**5 - 0.160196308900761z1(t)3z2(t) + 0.175631451141401z1(t)2z3(t) + 0.175631451141401z1(t)z2(t)**2 - 0.0541233994684807z1(t)z4(t) - 0.0541233994684807z2(t)z3(t) + 0.636625585963109z5(t)) dw/dt 方程: Eq(Derivative(w5(t), t), -0.00762298463733787w1(t)**5 + 0.0567641238697187w1(t)4z1(t) + 0.120274433900761w1(t)3w2(t) - 0.151175019222945w1(t)3*z1(t)2 - 0.167776956943164w1(t)**3z2(t) - 0.503330870829491w1(t)**2w2(t)z1(t) + 0.486868548858599w1(t)2w3(t) + 0.154472974862873w1(t)2z1(t)**3 + 0.581186899564655w1(t)2z1(t)z2(t) - 0.611022442368344*w1(t)2z3(t) + 0.486868548858599w1(t)w2(t)**2 + 0.581186899564655w1(t)w2(t)z1(t)2 - 1.22204488473669w1(t)w2(t)z2(t) - 1.22204488473669w1(t)w3(t)z1(t) - 0.69587660053152w1(t)w4(t) - 0.0104061952202809w1(t)z1(t)4 - 0.333303538616248w1(t)z1(t)2z2(t) + 1.03045647810218w1(t)z1(t)z3(t) + 0.515228239051092w1(t)z2(t)2 + 0.713851832099113w1(t)z4(t) - 0.611022442368344w2(t)**2z1(t) - 0.69587660053152w2(t)w3(t) - 0.111101179538749w2(t)z1(t)3 + 1.03045647810218w2(t)z1(t)z2(t) + 0.713851832099113w2(t)z3(t) + 0.515228239051092w3(t)*z1(t)2 + 0.713851832099113w3(t)z2(t) + 0.713851832099113w4(t)z1(t) - 1.25662558596311w5(t) - 0.0519698374317043z1(t)5 - 0.31620906382046*z1(t)3z2(t) + 0.346676256924589z1(t)2z3(t) + 0.346676256924589z1(t)*z2(t)2 - 0.106833357111312z1(t)z4(t) - 0.106833357111312z2(t)z3(t))

求解各阶解,形如:

= 各阶解 = w1 = 0 w2 = -0.0211143402100825a(t0)**2exp(1.27325117192622t)exp(-1.27325117192622t0) w3 = -0.00179505802924157a(t0)3exp(1.27325117192622t)exp(-1.27325117192622t0) + 0.0331683056091246*a(t0)3exp(1.90987675788933t)exp(-1.90987675788933t0) w4 = 0.00157395461517941a(t0)**4exp(1.27325117192622t)exp(-1.27325117192622t0) + 0.00422975802518084a(t0)4exp(1.90987675788933t)exp(-1.90987675788933t0) - 0.0223672954802892*a(t0)4exp(2.54650234385244t)exp(-2.54650234385244t0) w5 = -0.000525489787814235a(t0)**5exp(1.27325117192622t)exp(-1.27325117192622t0) - 0.00361886497519084a(t0)5exp(1.90987675788933t)exp(-1.90987675788933t0) - 0.00380315870113136*a(t0)5exp(2.54650234385244t)exp(-2.54650234385244t0) - 0.00401881299356255a(t0)**5exp(3.18312792981555t)exp(-3.18312792981555t0) z1 = a(t0)exp(0.636625585963109t)exp(-0.636625585963109t0) z2 = 0.0425080303571217a(t0)2exp(0.636625585963109t)exp(-0.636625585963109t0) - 0.0425080303571217*a(t0)2exp(1.27325117192622t)exp(-1.27325117192622t0) z3 = -0.0381756377357578a(t0)**3exp(0.636625585963109t)exp(-0.636625585963109t0) - 0.00361386528968398a(t0)3exp(1.27325117192622t)exp(-1.27325117192622t0) + 0.0417895030254418*a(t0)3exp(1.90987675788933t)exp(-1.90987675788933t0) z4 = 0.0140666785450764a(t0)**4exp(0.636625585963109t)exp(-0.636625585963109t0) + 0.00316873318782794a(t0)4exp(1.27325117192622t)exp(-1.27325117192622t0) + 0.00532916838964353*a(t0)4exp(1.90987675788933t)exp(-1.90987675788933t0) - 0.0225645801225478a(t0)**4exp(2.54650234385244t)exp(-2.54650234385244t0) z5 = 0.0130038185344948a(t0)5exp(0.636625585963109t)exp(-0.636625585963109t0) - 0.00105793198511116*a(t0)5exp(1.27325117192622t)exp(-1.27325117192622t0) - 0.00455949033428469a(t0)**5exp(1.90987675788933t)exp(-1.90987675788933t0) - 0.00383670342737988a(t0)5exp(2.54650234385244t)exp(-2.54650234385244t0) - 0.00354969278771912*a(t0)5exp(3.18312792981555t)exp(-3.18312792981555t0)

3.重整化方程

整合z,w的所有解集,对于z(t),当tt0,计算da(t0)dt0,得到重整化方程,形如:

da(t0)dt0=0.0228458146881948a50.0342929006076182a4+0.0509078545937214a30.0270616997342403a2+0.636625585963109a

至此,原方程被转换为一维变尺度高阶动力学方程,对原方程有很好的近似,可以更加精确地刻画吸引域边界

image-20250703124503382

故障检测

如图所示,红色曲线为故障曲线,当其突破吸引域边界(黑色点线)后一去不返,此时恢复系统参数无法使系统回归正常状态(stable point),利用重整化近似得到的边界(蓝色)能够及时检测到截断时间cct,而主流的线性近似方法(绿色虚线,IEEE Trans提出)则无法精确检测到。

image-20250703124559883